Exclusive-NOR Gate
The Exclusive-NOR Gate function is a digital logic gate that is the reverse or complementary form of the Exclusive-OR functionHowever, an output “1” is only obtained if BOTH of its inputs are at the same logic level, either binary “1” or “0”. For example, “00” or “11”. This input combination would then give us the Boolean expression of: Q = (A ⊕ B) = A.B + A.B
Then the output of a digital logic Exclusive-NOR gate ONLY goes “HIGH” when its two input terminals, A and B are at the “SAME” logic level which can be either at a logic level “1” or at a logic level “0”. In other words, an even number of logic “1’s” on its inputs gives a logic “1” at the output, otherwise is at logic level “0”.
Then this type of gate gives and output “1” when its inputs are “logically equal” or “equivalent” to each other, which is why an Exclusive-NOR gate is sometimes called an Equivalence Gate.
The logic symbol for an Exclusive-NOR gate is simply an Exclusive-OR gate with a circle or “inversion bubble”, ( ο ) at its output to represent the NOT function. Then the Logic Exclusive-NOR Gate is the reverse or “Complementary” form of the Exclusive-OR gate, (A ⊕ B) we have seen previously.
Ex-NOR Gate Equivalent
The Digital Logic “Ex-NOR” Gate
2-input Ex-NOR Gate
Symbol | Truth Table | ||
2-input Ex-NOR Gate | B | A | Q |
0 | 0 | 1 | |
0 | 1 | 0 | |
1 | 0 | 0 | |
1 | 1 | 1 | |
Boolean Expression Q = A ⊕ B | Read if A AND B the SAME gives Q |
The logic function implemented by a 2-input Ex-NOR gate is given as “when both A AND B are the SAME” will give an output at Q. In general, an Exclusive-NOR gate will give an output value of logic “1” ONLY when there are an EVEN number of 1’s on the inputs to the gate (the inverse of the Ex-OR gate) except when all its inputs are “LOW”.
Then an Ex-NOR function with more than two inputs is called an “even function” or modulo-2-sum (Mod-2-SUM), not an Ex-NOR. This description can be expanded to apply to any number of individual inputs as shown below for a 3-input Exclusive-NOR gate.
3-input Ex-NOR Gate
Symbol | Truth Table | |||
3-input Ex-NOR Gate | C | B | A | Q |
0 | 0 | 0 | 1 | |
0 | 0 | 1 | 0 | |
0 | 1 | 0 | 0 | |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | |
1 | 0 | 1 | 1 | |
1 | 1 | 0 | 1 | |
1 | 1 | 1 | 0 | |
Boolean Expression Q = A ⊕ B ⊕ BC | Read as “any EVEN number of Inputs” gives Q |
We said previously that the Ex-NOR function is a combination of different basic logic gates Ex-OR and a NOT gate, and by using the 2-input truth table above, we can expand the Ex-NOR function to: Q = A ⊕ B = (A.B) + (A.B) which means we can realise this new expression using the following individual gates.
Ex-NOR Gate Equivalent Circuit
Ex-NOR Function Realisation using NAND gates
Commonly available digital logic Exclusive-NOR gate IC’s include:
TTL Logic Ex-NOR Gates
- 74LS266 Quad 2-input
CMOS Logic Ex-NOR Gates
- CD4077 Quad 2-input