Data Encapsulation in C++
All C++ programs are composed of the following two fundamental elements −
- Program statements (code) − This is the part of a program that performs actions and they are called functions.
- Program data − The data is the information of the program which gets affected by the program functions.
Data encapsulation is a mechanism of bundling the data, and the functions that use them and data abstraction is a mechanism of exposing only the interfaces and hiding the implementation details from the user.
C++ supports the properties of encapsulation and data hiding through the creation of user-defined types, called classes. We already have studied that a class can contain private, protected and public members. By default, all items defined in a class are private. For example −
class Box {The variables length, breadth, and height are private. This means that they can be accessed only by other members of the Box class, and not by any other part of your program. This is one way encapsulation is achieved.
public:
double getVolume(void) {
return length * breadth * height;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};
To make parts of a class public (i.e., accessible to other parts of your program), you must declare them after the public keyword. All variables or functions defined after the public specifier are accessible by all other functions in your program.
Making one class a friend of another exposes the implementation details and reduces encapsulation. The ideal is to keep as many of the details of each class hidden from all other classes as possible.
Data Encapsulation Example
Any C++ program where you implement a class with public and private members is an example of data encapsulation and data abstraction. Consider the following example −#include <iostream>When the above code is compiled and executed, it produces the following result −
using namespace std;
class Adder {
public:
// constructor
Adder(int i = 0) {
total = i;
}
// interface to outside world
void addNum(int number) {
total += number;
}
// interface to outside world
int getTotal() {
return total;
};
private:
// hidden data from outside world
int total;
};
int main() {
Adder a;
a.addNum(10);
a.addNum(20);
a.addNum(30);
cout << "Total " << a.getTotal() <<endl;
return 0;
}
Total 60Above class adds numbers together, and returns the sum. The public members addNum and getTotal are the interfaces to the outside world and a user needs to know them to use the class. The private member total is something that is hidden from the outside world, but is needed for the class to operate properly.
Designing Strategy
Most of us have learnt to make class members private by default unless we really need to expose them. That's just good encapsulation.This is applied most frequently to data members, but it applies equally to all members, including virtual functions.